Decomposition theorem of interval - value fuzzy sets 區(qū)間值模糊集合的分解定理
Decomposition theorems of fuzzy rough sets 模糊粗糙集的分解定理
Decomposition theorem and representation theorem of fuzzy rough sets 模糊粗糙集的分解定理及表現(xiàn)定理
Decomposition theorem and representation theorem on rough fuzzy numbers 粗糙模糊數(shù)的分解定理和表現(xiàn)定理
A decomposition theorem on m - spaces 空間的分解定理
Lastly , by applying the representation theorem of t - measures , we get the lebesgue decomposition theorem for tco - measures 最后,我們運用t _ ?測度的積分表示定理證明了t _ ?測度的lebesgue分解定理。
In 1978 and 1983 , schmidt and butnariu prove the hahn decomposition theorem for finite t - measures in a different way , respectively 在1978年和1983年, schmidt和butnariu先后分別用不同的方法證明了有限t _ ?測度的jordan分解是存在的。
Then , we show that infinite t - measures just as finite too - measures also have jordan decompositions by using the corollary of hahn decomposition theorem for t - measures 而后,利用hahn分解定理的推論我們得出了“無限t _ ?測度與有限t _ ?測度一樣也具有jordan分解”的結論。
In our paper , we firstly prove , in a similar way to the proof of hahn decomposition theorem for signed measures , that too - measures have hahn decompositions , too 在本文中,我們首先通過采用與經(jīng)典測度論中證明符號測度的hahn分解定理類似的方法證明了t _ ?測度的hahn分解定理。
As we all know , measures have three decomposition theorems in classical measure theory , that is , hahn decomposition theorem , jordan decomposition theorem and lebesgue decomposition theorem 眾所周知,在經(jīng)典測度論中,測度有三個分解定理,即, hahn分解定理、 jordan分解定理和lebesgue分解定理。